Search results

1 – 10 of 11
Article
Publication date: 1 September 1985

Initial work on aramid aluminium laminates (ARALL) was done by Professor L. B. Vogelesang and his co‐workers at the Delft University of Technology, The Netherlands. ARALL is now…

Abstract

Initial work on aramid aluminium laminates (ARALL) was done by Professor L. B. Vogelesang and his co‐workers at the Delft University of Technology, The Netherlands. ARALL is now being commercialized by Alcoa and 3M. This was stimulated by Vogelesang's early work which showed the adhesively bonded laminate of high strength isotropic aluminium sheet and fatigue and fracture resistant aramid fibres provides superior specific strengths and fatigue resistance. The fatigue crack growth characteristics are such that cracks will not propagate in ARALL under normal loading conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 57 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 1999

A. Vlot, L.B. Vogelesang and T.J. de Vries

Fibre metal laminates were developed at Delft University during the last two decades as a family of new hybrid materials consisting of bonded thin metal sheets and fibre/adhesive…

5987

Abstract

Fibre metal laminates were developed at Delft University during the last two decades as a family of new hybrid materials consisting of bonded thin metal sheets and fibre/adhesive layers. This laminated structure provides the material with excellent fatigue, impact and damage tolerance characteristics and a low density. While the 20 per cent weight reduction was the prime driver behind the development of this new family of materials, it turns out that additional benefits like cost reduction and an improved safety level have become more and more important. The combination of these aspects in one material makes fibre metal laminates a strong candidate material for fuselage skin structures of the new generation of high capacity aircraft. The focus on this application currently leads to industrialization and qualification that makes this material available to the aircraft designer.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 28 December 2021

Costas D. Kalfountzos, George S.E. Bikakis and Efstathios E. Theotokoglou

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the…

Abstract

Purpose

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the investigation of GLAss fiber-REinforced aluminum laminate (GLARE) panels using probabilistic finite element method (FEM) analysis.

Design/methodology/approach

The FEM in combination with the eigenvalue buckling analysis is used for the construction of buckling coefficient–curvature parameter diagrams of seven fiber–metal laminate grades, three glass-fiber composites and monolithic 2024-T3 aluminum. The influences of uncertainties concerning material properties and laminate dimensions on the buckling load are studied with sensitivity analyses.

Findings

It is found that aluminum has a stronger impact on the buckling behavior of the fiber–metal laminate panels than their constituent uni-directional or woven composites. For the classical simply supported boundary conditions, it is found that there is an approximately linear relation between the buckling coefficient and the curvature parameter when the diagrams are plotted in double logarithmic scale. The probabilistic calculations demonstrate that there is a considerable probability to overestimate the buckling load of GLARE panels with deterministic calculations.

Originality/value

In this study, the deterministic and probabilistic buckling response of fiber metal laminate panels is investigated. It is shown that realistic structural uncertainties could substantially affect the buckling strength of aerospace components.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2014

Patryk Jakubczak, Jaroslaw Bieniaś, Krzysztof Majerski, Monika Ostapiuk and Barbara Surowska

The purpose of this study was to carry out the analysis of impact resistance for aluminum hybrid laminates and polymer matrix composites reinforced with glass and carbon fibers…

Abstract

Purpose

The purpose of this study was to carry out the analysis of impact resistance for aluminum hybrid laminates and polymer matrix composites reinforced with glass and carbon fibers. Damage modes and damages process under varied impact energies are also presented and discussed.

Design/methodology/approach

The subject of examination were fiber metal laminates – FMLs (Al/CFRP and Al/GFRP). The samples were subjected to low-velocity impact by using a drop-weight impact tester. The specimens after impact were examined using non-destructive and destructive inspection techniques.

Findings

The hybrid laminates are characterized by higher resistance to impact in comparison to the conventional laminates. The delaminations between composite layers as well as the delaminations on metal/composite interface and lateral cracks are the prevailing type of destruction mechanisms. No significant relationships between metal volume friction coefficient vs response to the impact were recorded for the hybrid laminates under tests.

Practical implications

The understanding of impact behavior of FMLs is particularly important for selecting these materials and their designing, in damage tolerance philosophy aspect in aerospace industry as well as in searching the methods of predicting of FML hybrid materials resistance to impact. The test results might be useful for the validation of simulations using numerical methods.

Originality/value

The paper presents the impact resistance of new hybrid laminates for aerospace applications. The identification of damage character and failure mechanisms as well as the relationships between damage and impact responses of aluminum/carbon and aluminum/glass hybrid laminates were estimated.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 May 2016

Patryk Adam Jakubczak and Jaroslaw Bienias

The purpose of this paper was to compare the response of selected hybrid Fibre Metal Laminates (FMLs) in the form of glass and carbon fibre aluminium laminates to dynamic and…

Abstract

Purpose

The purpose of this paper was to compare the response of selected hybrid Fibre Metal Laminates (FMLs) in the form of glass and carbon fibre aluminium laminates to dynamic and static loads compared together.

Design/methodology/approach

The subject of examination was FMLs (Al/CFRP and Al/GFRP). The samples were subjected to low-velocity impact and quasi-static indentation. The response of laminates to the both types of loads was evaluated by comparison of force – displacement diagrams including the values of maximum forces as well as the extent and nature of structure degradation as a result of loads.

Findings

In case of Al/GFRP laminates, the analysis of characteristic relations, i.e. force – displacement and the impactor influence area in case of indentation and impact confirmed that certain parameters, i.e. the values of maximum force transferred by laminate, destruction surface area and destruction mechanisms are consistent after static and dynamic tests. Significant differences were found in destruction scale in Al/GFRP laminates despite considerable fitting of force – displacement diagrams to static and dynamic tests. Destruction surface area observed in FML carbon laminates subjected to dynamic loads was significantly smaller than after indentation but perforation area occurring at the unloaded side was much more extensive.

Practical implications

Research issues in the scope of dynamic loads by means of concentrated force in composite materials and interpretation of the effects of their impacts are extremely complex. Therefore, the attempts are made to predict the resistance to dynamic loads by means of concentrated force using statistical research methods. The test results might be useful for the design and simulations of FMLs applications in aerospace.

Originality/value

From the analysis of available literature, it appears that there are no studies exploring the issue of forecasting or comparison the effects of static and dynamic tests for hybrid FMLs. The new hybrid materials like FMLs have different mechanisms of damage initiation and propagation as a result of impact, in comparison to classic composite materials. It means that possibilities of using the static loads to predict impact resistance should be known well for all type of FMLs. Actually, there is no research about static indentation in relation to low-velocity impact of aluminium-carbon laminates. This situation encouraged the authors of the present study to undertake research in this scope. The results can demonstrate and explain why prediction of impact resistance of FMLs by using static indentation is uncertain and not always valuable.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2014

Krzysztof Majerski, Barbara Surowska, Jarosław Bieniaś, Patryk Jakubczak and Monika Ostapiuk

The purpose of this paper is to present microstructural and fractographic analysis of damage in aluminum (2024T3)/carbon-fiber reinforced laminates (AlC) after static tensile…

Abstract

Purpose

The purpose of this paper is to present microstructural and fractographic analysis of damage in aluminum (2024T3)/carbon-fiber reinforced laminates (AlC) after static tensile test. The influence of fiber orientation on the failure was studied and discussed.

Design/methodology/approach

The subject of examination was AlC. The fiber–metal laminates (FMLs) were manufactured by stacking alternating layers of 2024-T3 aluminum alloy (0.3 mm per sheets) and carbon/epoxy composites made of unidirectional prepreg tape HexPly system (Hexcel, USA) in [0], [± 45] and [0/90]S configuration. The fractographic analysis was carried out after static tensile test on the damage area of the specimens. The mechanical tests have been performed in accordance to ASTM D3039. The microstructural and fractographic analysis of FMLs were studied using optical (Nikon SMZ1500, Japan) and scanning electron microscope (Zeiss Ultra Plus, Germany).

Findings

FMLs based on aluminum and carbon/epoxy composite are characterized by high tensile properties depending on their individual components and the orientation of the reinforcing fibers, failure of hybrid laminates indicates the complexity process of degradation of these materials. The nature of damage in FML layers is similar to that typical in polymer composites with interlaminar delaminations, transverse cracks of the composite layers, degradation of fiber/matrix interface, damage process in FMLs is also associated mainly with interface between metal and fiber reinforced composite. The mixed damage – cohesive and adhesive – was observed.

Originality/value

One of the most important aspect in the designing and manufacturing process in the service life of composite structures is damage mechanisms. The damage processes in composite materials, particularly in FMLs, are more complex in comparison to metal materials and fiber reinforced polymers.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 9 April 2018

Patryk Adam Jakubczak, Jaroslaw Bienias, Radoslaw Mania and Krzysztof Majerski

The purpose of the study was to develop the forming methodology for FML laminates with complex shapes, based on aluminium and epoxy-glass composite.

Abstract

Purpose

The purpose of the study was to develop the forming methodology for FML laminates with complex shapes, based on aluminium and epoxy-glass composite.

Design/methodology/approach

The subject of research encompassed Al/GFRP fibre metal laminates. Autoclave process has been selected for FML profiles production. The manufacturing process was followed by quality analysis for laminates produced.

Findings

The achievement of high stability and dimensional tolerance of thin-walled FML laminates is ensured by developed technology. The values of selected sections angles are significantly limited as a result of forming of FML laminates through the components performing. Failure to adhere to technological recommendations and to high regime of developer technology may lead to the occurrence of defects in FML.

Practical implications

Thin-walled composite structures could be applied in light-weight constructions, such as aircraft structures, which must meet rigorous requirements with regard to operation under complex load. The development of this type of technology may contribute to increased importance of FML sections in research area and finally to increased scope of their applications.

Originality/value

The production of thin-walled FML profiles with complex geometry, which would be characterized by dimensional stability and repeatable structural quality free of defects, is associated with many problems. No studies have been published so far on an effective forming process for FML laminates with complex shapes. Developed methodology has been verified through quality evaluation of produced profiles by means of non-destructive and destructive methods. The development of this type of technology may contribute to increased importance of FML, e.g. in aerospace technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 April 2018

Krzysztof Majerski, Barbara Surowska, Jaroslaw Bienias and Jaroslaw Szusta

The purpose of this study is to investigate the results of reinforcing fibre metal laminates with glass fibres under low-cycle fatigue conditions in a limited number of cycles.

Abstract

Purpose

The purpose of this study is to investigate the results of reinforcing fibre metal laminates with glass fibres under low-cycle fatigue conditions in a limited number of cycles.

Design/methodology/approach

The tests were carried out on open-hole rectangular specimens loaded in tension-tension at high load ranges of 80 and 85 per cent of maximum force determined in static test, correspondingly. The number of cycles for destruction has been determined experimentally.

Findings

By means of microscopic observations, it was possible to determine the moment of crack initiation and their growth rate. Furthermore, it was possible to identify the impact of reinforcing fibre orientation in composite layers, material creating the metal layers, on fatigue life and on nature of crack propagation.

Practical implications

This work validates the possibility of increasing the resistance of fibre metal laminates to low-cycle fatigue by modifying the structure of the laminate.

Originality/value

The resistance of fibre metal laminates on low-cycle fatigue is not widely described and the phenomena occurring during degradation are poorly understood.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 October 2019

Jakub Šedek, Roman Růžek and Vladislav Oliva

The purpose of this paper is to deal with the FE analysis of strain constraint around the crack tip under cyclic loading and its utilization using crack growth prediction strip…

Abstract

Purpose

The purpose of this paper is to deal with the FE analysis of strain constraint around the crack tip under cyclic loading and its utilization using crack growth prediction strip yield model (SYM). During cycling, the constraint develops based on the load history. The monotonic loading is analyzed mostly, but during cyclic loading the conditions are different. The constraint is analyzed after several loading cycles applied in upwards part of the cycle and the formula for its development is proposed.

Design/methodology/approach

The study is based on the 3D FE analysis of middle-cracked tension specimen M(T). The strain constraint is described by Newman’s factor α. The variability of constraint factor α was analyzed for several load levels and specimen thicknesses. The crack is considered as non-propagating with straight crack front. The material is modelled as elastic-perfectly plastic. The SYM is modified by implementing variable constraint and the experimental results are compared with the simulation.

Findings

In major part of the loading cycle, it was found by FE analysis, that the constraint factor αg is lower after overloads than when creating monotonic plastic deformation on the same load level. The value of αg is governed by the ratio of thickness B over the plastic zone size rp. By implementing the variable constraint factor into the SYM, the improvement of the predicted specimens lives under variable amplitude loading was shown.

Originality/value

The new phenomenon on the variability of strain constraint during cyclic loading is presented. The development of constraint factor αg during cyclic loading is different from the monotonic loading and should be accordingly implemented into prediction models.

Details

International Journal of Structural Integrity, vol. 11 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 February 2020

Elluri Venkata Prasad and Shishir Kumar Sahu

The purpose of this study is to study the buckling behavior of new aircraft material, i.e. glass fiber metal laminated (GFML) plates.

Abstract

Purpose

The purpose of this study is to study the buckling behavior of new aircraft material, i.e. glass fiber metal laminated (GFML) plates.

Design/methodology/approach

The first-order Reissner–Mindlin theory is used in the present finite element formulation to determine the buckling loads of GFML plates. A program is developed in MATLAB for analyzing the effect of different parameters on buckling loads GFML plates. A set of experiments was performed to determine critical buckling loads of GFML plates using universal testing machine INSTRON 8862 and compared with predictions using the numerical model.

Findings

The effects of various parameters such as aspect ratio, side to thickness ratio, ply orientation and boundary conditions on buckling loads of GFMLs are examined. With the increase of aspect ratio, the reduction in buckling load is observed, while the increase inside to thickness ratio decreases the buckling load of GFML plates. There is a slight variation in buckling load with the increase of ply orientation. The buckling load is significantly influenced by boundary conditions because of restraint at the edges.

Practical implications

These types of materials are used in lightweight structures such as aircraft, aerospace and military vehicles. The results reported in the present study can be used as design guidelines while designing fiber metal laminated (FML) plated structures.

Originality/value

For the first time, the authors have studied the buckling behavior of bidirectional woven FML plates using both numerical and experimental techniques.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 11